Mudball: Surface dust and Snowball Earth deglaciation
نویسندگان
چکیده
[1] Recent modeling results have raised doubts about the ability to deglaciate from a global glaciation at atmospheric carbon dioxide levels that are realistic for a Neoproterozoic Snowball Earth. Here we argue that over the lifetime of a Snowball event, ice dynamics should lead to the development of a layer of continental and volcanic dust at the ice surface in the tropics that would significantly lower the tropical surface albedo and encourage deglaciation. This idea leads to the prediction that clay drapes found on top of Neoproterozoic glaciations should be thicker in tropical than extratropical regions. We test this idea by running the FOAM general circulation model (GCM) with an added tropical dust layer of different sizes and albedos and find that the tropical dust layer causes Snowball deglaciation at pCO2 = 0.01–0.1 bar in a reasonable regime of these parameters. We find similar, though more nuanced, results from a limited number of test cases using National Center for Atmospheric Research’s CAM GCM.
منابع مشابه
Climate dynamics of a hard snowball Earth
[1] The problem of deglaciating a globally ice-covered (‘‘hard snowball’’) Earth is examined using a series of general circulation model simulations. The aim is to determine the amount of CO2 that must be accumulated in the atmosphere in order to trigger deglaciation. Prior treatments of this problem have been limited to energy balance models, which are incapable of treating certain crucial phy...
متن کاملInvestigating plausible mechanisms to trigger a deglaciation from a hard snowball Earth
Among the issues raised by the globally ice-covered Earth, or a so-called ‘hard’ snowball–Earth scenario, one of the most important is to establish the CO2 threshold required for the deglaciation. This problem has been addressed using the Energy-Balance Model (or EBM), which showed that for Neoproterozoic insolation, 0.29 bar of CO2 would be needed to trigger deglaciation. New results, obtained...
متن کاملThe Importance of Ice Vertical Resolution for Snowball Climate and Deglaciation
Sea ice schemes with a few vertical levels are typically used to simulate the thermodynamic evolution of sea ice in global climate models. Here it is shown that these schemes overestimate the magnitude of the diurnal surface temperature cycle by a factor of 2–3 when they are used to simulate tropical ice in a Snowball earth event. This could strongly influence our understanding of Snowball term...
متن کاملSnowball Earth ocean chemistry driven by extensive ridge 1 volcanism during Rodinia breakup
During Neoproterozoic Snowball Earth glaciations, the oceans gained 8 massive amounts of alkalinity, culminating in the deposition of massive 9 cap carbonates upon deglaciation. Changes in terrestrial runoff associ10 ated with both breakup of the Rodinia supercontinent and deglaciation 11 can explain some, but not all of the requisite changes in ocean chem12 istry. Submarine volcanism along sha...
متن کاملThe dynamics of the Snowball Earth Hadley circulation for off-equatorial and seasonally varying insolation
I study the Hadley circulation of a completely icecovered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of realistic dry Hadley circulations. Perpetual off-equatorial as w...
متن کامل